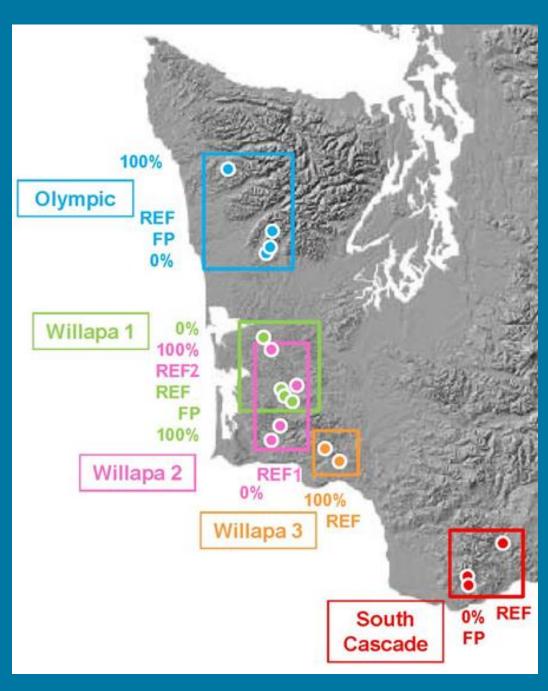
## **Stream-Associated Amphibian Response to Forestry Practices in Western Washington**



Aimee McIntyre, Jay Jones, Eric Lund, Jack Giovanini, Stephan Duke, Marc Hayes, Timothy Quinn, Andrew J. Kroll Washington Department of Fish and Wildlife Weyerhaeuser

# **Study Objective**


Evaluate effectiveness of WA State Forest Practices Rules: Compare riparian buffer configuration for non-fish-bearing streams to buffer alternatives:

- riparian stand characteristics
- water quality
- stream characteristics and productivity
- amphibian occupancy, density and genetics
- exports to fish-bearing streams
- response of fish downstream



# Study Sites (N = 17)

- 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> order
- perennial, non-fish-bearing
- managed 2<sup>nd</sup>-growth forests
- private / state / federal
- 30 80 yr old stands
- 31 133 ac basins



# **Study Timeline**

Pre-Harvest Sampling (2006-2008) Harvest Implementation (2008/2009) Post-Harvest Sampling (2009-2010)

**Data Analyses** 

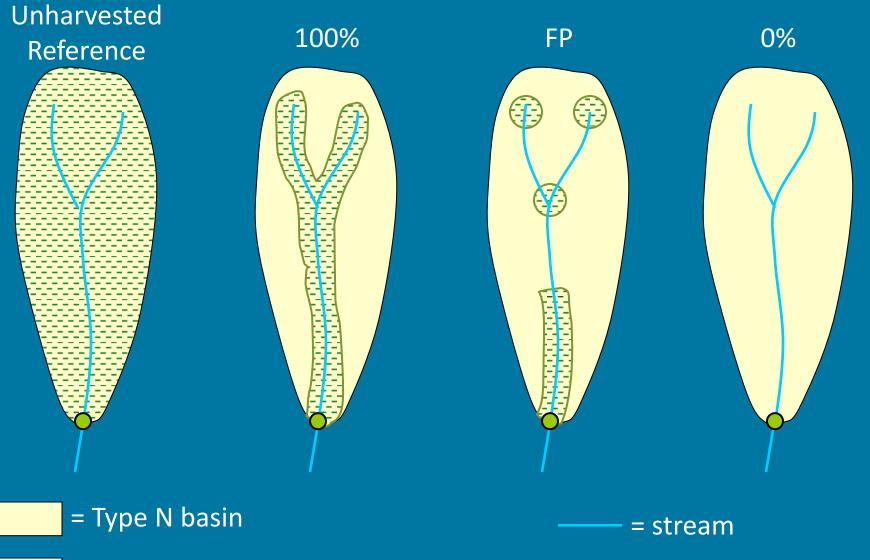
**BACI** 

Before-After Control-Impact

Harvest effect

pre- / post- comparison

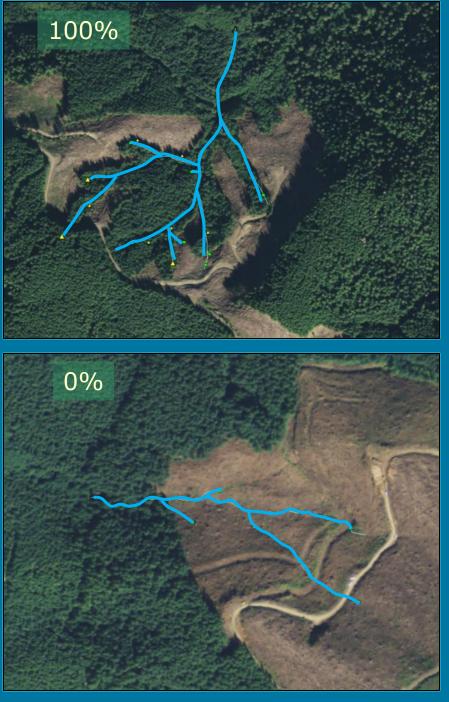
**Environmental confound** 


controlled for with reference v. treatment comparison








## **Experimental Treatments**



= unharvested / 50-ft buffer

• = F/N break





## **Study Objectives**

For three stream-associated amphibian taxa:

- 1. Compare abundance
- 2. Presence in areas obstructed by slash and windthrow

#### **Coastal Tailed Frog** (*Ascaphus truei*)





**Torrent Salamanders** (3 *Rhyacotriton* species)

#### **Giant Salamanders** (2 *Dicamptodon* species)



# **Study-specific Influences on Detection**

- Environmental variability (long-term study over 5-year period)
- Treatments applied (potential confound of detection with treatment)



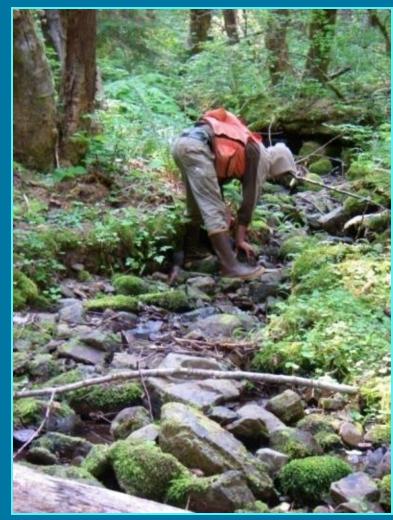
# **Animal counts adjusted for detection**

**Binomial mixture models**<sup>1</sup> estimate detection and abundance spatially and temporally replicated counts of <u>unmarked</u> animals

#### Assumptions:

- closure of population during sampling period
- independence of counts across sites

#### **Detection covariates:**


 Riparian condition (unharvested, buffered, unbuffered), stream order<sup>2</sup>, stream temperature<sup>2</sup>, year



<sup>1</sup>Royle, J. A. 2004. *N-mixture models for estimating population size from spatially replicated counts*. Biometrics 60:108-115.

<sup>2</sup>McIntyre et al 2012. *Empirical and simulation evaluations of an abundance estimator using unmarked individuals of cryptic forest-dwelling taxa*. Forest Ecology and Management 286:129-136.

# Methods Light-touch Sampling



- Turn moveable objects
- Cobble-sized (> 64 mm)
- July October
- Day (0700 1900 h)

### Counts

- Systematic Sample
- N/F break to headwalls

### **Detection Plots**

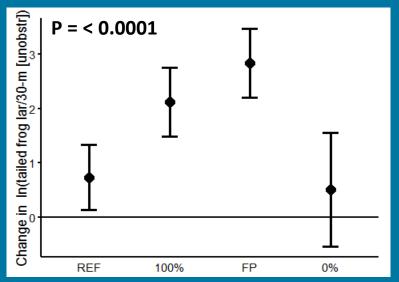
- 30-m detection plots
- 3 occasions
- Repeat samples at least 1 day apart
- Repeat samples conducted by different sampler

# **Light-touch adjusted for detection**

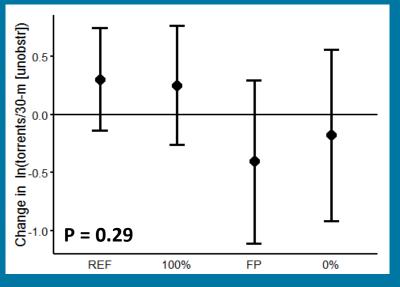
- Estimated detection probability for detection plots
- Adjusted basin-wide light-touch counts for imperfect detection (including covariates)
- Calculated weighted averages of adjusted counts based on length within each strata (riparian condition and stream order)



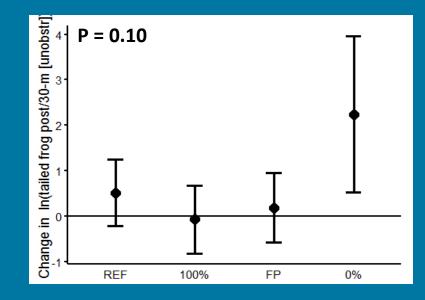




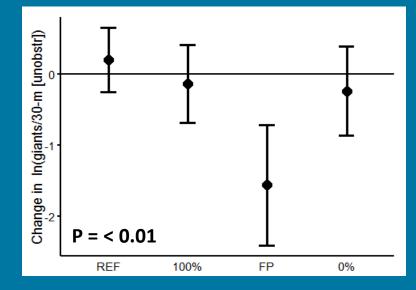

## **Abundance Results - Detection** Evidence of covariate effect on detection


| Detection<br>Covariate | Tailed Frog<br>Larvae | Tailed Frog<br>Post | Torrent<br>Salamander | Giant<br>Salamander |
|------------------------|-----------------------|---------------------|-----------------------|---------------------|
| Stand Condition        | Y                     | Ν                   | Y                     | Υ                   |
| Order                  | NA                    | NA                  | Ν                     | γ                   |
| Temperature            | NA                    | NA                  | Ν                     | Ν                   |
| Year                   | NA                    | NA                  | Ν                     | Ν                   |




## **Abundance Results**




#### Tailed Frog – larvae



#### Torrent Salamanders



#### Tailed Frog – post



Giant Salamanders

### **Presence in Obstructed Reaches**



## **Sampling in obstructed reaches**

- 3-m long rubble-rouse plots
- 1 6 plots per stream (N = 48 at 6 and 8 sites in 2009 and 2010)
- block nets placed up- and down-stream
- debris and stream substrates removed
- captured amphibians as encountered



## **Amphibians in obstructed reaches**

• Tailed Frog: 2 of 6 (2009) and 3 of 8 (2010) basins [max #/plot = 8]

• Torrents: 5 of 6 (2009) and 8 of 8 (2010) basins [max #/plot = 60]

• Giants: 6 of 6 (2009) and 6 of 8 (2010) basins [max #/plot = 19]



## Discussion

### Abundance:

- Negative Giant Salamander response in FP treatment (82% decrease; not FP-designated species)
- Positive Tailed Frog larvae response in 100% and FP treatments (4 and 8 times greater, respectively)
- Positive Tailed Frog post-metamorph response in 0% treatment (6 times greater)
- Lack of Torrent Salamander response







## Discussion

### **Amphibian use of obstructed reaches:**

- All amphibians detected in obstructed reaches

### **Detection:**

- Varied by riparian stand condition (tailed frog larvae, giant salamanders, torrent salamanders) and stream order (giant salamanders)
- Not accounting for detection could have resulted in biased results



## Discussion

### **Short-term nature of study:**

- Only 2 years post-harvest
- Does not describe potential impacts to reproduction
- Understanding long-term impacts will require study over longer temporal scale

### **Recommendations:**

- Continued monitoring after at least one generational turnover
- Including both demographics and genetics



# Acknowledgements

Funding: Cooperative Monitoring, Evaluation and Research Committee (CMER) Study Collaborators: WA DNR, WA Ecology, NW Indian Fisheries Commission, WSU Weyerhaeuser Landowners: Fruit Growers Supply Co., Gifford Pinchot National Forest, Green Crow, Hancock Forest Management, Longview Timber, Olympic National Forest, Rayonier, The Nature Conservancy, WA DNR, Weyerhaeuser Field Staff: T. Waterstrat, S. Anderson, J. Armstrong, A. Barecca, S. Coven, T. Curry, J. Dhundale, K. Douville, C. Dressel, R. Dyer, N. Gilman, N. Halbert, D. Harrington, M. Hendrickson, T.Hicks, S. Jones, H. Lyons, D. Mangan, J. Marsten, C. Myers, K.

Perry, C. Richart, C. Roberts, C. Thompson, M. Thompson, J. Walker, C. Waters, N. Wenzel, A. Yost, K. Young, K. Zaret

